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A set of orthogonal polynomials is defined by specifying an interval
and a weight function. Any such set of polynomials satisfies a three
term recurrence refation with coefficients @, and #,, which in turn
satisfy coupled recurrence relations. If the pelynomials do not belong ta
the set of classicafl polynomials, these recurrence relations are generally
numerically unstable. in this paper, we consider the generation of
several sets of orthogenal polynomials that are useful in the solution of
different physical problems. We construct recurrence relations far the
coeflicients in the three term recurrence relations of these polynomials
and study their numerical instability. Divergent asymptotic series for
the recurrence coeflicients are derived and used to obtain accurate
approximations through the use of direct summation or continued frac-
tions. A comparison of these approximate recurrence coeHicients is
made with the accurate values obtained with the use of multiple
precision arithmetic. € 1993 Academic Press, Inc.

1. INTRODUCTION

Classical orthogonal polynomiais have been used as basis
[unctions in the solution of a large number of physical
problems described by differential and/or integral equa-
tions. The choice of basis set is dictated by the interval over
which the problem is defined, as well as the anticipated
behaviour of the solutions which suggest the form of the
weight function. In many applications, it is preferable to
consider a weight function which leads to a set of nenciassi-
cal polynomials. Several years ago Shizgal [ ] constructed
the polynomials orthogonal with weight function w(x)=
x% " on the interval [0, co ] and demonstrated the way in
which this basis sct greatly accelerated the convergence of
the cigenvalues of the Lorentz Fokker-Planck operator
relative to the use of Laguerre polynomials. The Laguerre
polynomials  arc  penerated  with  the  weight  Tunction
wiv)=¢ Von the interval [0, oo}, Other examples of non-
classical polynomials include the sets gencrated with weight
functions wix)= ¢ ~*2*+" op the interval [ — oo, 0] [2],
w(x) = x% =" on [0, 007 [3], and w(x) = x% " on
[0, oo] for use in electron transport calculations. It is well
known that the generation of nonclassical polynomials
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basis sets is numerically unstable [47]. A more recent discus-
sion of the computational aspects of orthogonal polyno-
mials has been given by Gautschi [5], where several other
nonclassical polynomials are presented.

These sets of orthogonal polynomials also serve to define
a quadrature procedure such that integrals over the weight
function are given by

"

| T iy dyx Y ow S,

i=1

(1

where the calenlation of the weights and points, w;, x;, have
been described elsewhere [67]. The points, x,, are the roots
of the polynomial of order N. The solution of integral
and/or diflcrential equations can also be formulated in
terms of a discretization of the unknown function, that is, by
the values of the function at the quadrature points rather
than by the explicit expansion in the basis set. This is the
basis for the quadrature discretization method (QDM)
developed by Shizgal and Blackmore [7] and an analogous
procedure referred to as the discrete variable representation
{DVR) by Light and co-workers [8].

The QDM and the DVR are similar to coliocation
methods and belong to the large class of spectral methods in
numerical analysis [9]. However, spectral methods are
generally restricled to the use of Chebyshev polynomials or
Fourier serics as basis set expansions. There is considerable
interest in using spectral methods based on other polyno-
mials. The present paper is directed towards this objective.
In Section 2, we discuss the derivation of the recurrence
relations for the coefficients in the three term recurrence
relations for scveral different weight functions. We derive
asymptotic cxpansions in Section 3 so as to generate
approximale but accurate values for the recurrence cocf-
ficicnts. The leading behavior ol the asymplotic expansions
arc used to analyse the stability of these recurrence relations
in Section 4. Summation of asymptotic series and numerical
results are discussed in Section 5, A summary of our
methods and results is presented in Section 6.
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2. THREE TERM RECURRENCE COEFFICIENTS

Any set of orthogonal polynomials of the form discussed
in the introduction satisfy a three term recurrence relation
of the form,

er+1(x)=(x_an)Qn(x)ianQn—ly (2)

where ¢, = 1. The polynomials generated with Eq. (2) are
not normalized to 1. The normalized polynomials P,=
Q./</ 7, satisfy the recurrence relation

IPH(X): ﬁn+lPn+1(x)+anPn(x)+\/EPn—l(x)a (3)

where the normalization factors are given by
7a= <03 (4)

The symbol ¢ > denotes the integration over x with the
weight function and is referred to as the average over x. The
coefficients f, and «, are given by

ﬁnzh}’n/ynﬁl (5)

and
w,={xP>. (6}

The sections that follow outline the results obtained for
three different weight functions. The first two have been dis-
cussed previously, whereas the results for the third are new,

2a. Speed Polynomials

Many problems in kinetic theory involve the evaluation
of averages over a Maxwellian distribution function f*(c),
where ¢ is the particle speed. The equilibrium average value
of a function F{c) is given by

F=ffM(c)F(c) de

A {7 e (x) di, (7
1)

N

where f*(c) = (m/2nkT)*? exp(—mc*/2kT), m is the mass,
and x=(m/2kT)" ¢ is the dimensionless speed. In an
earlier paper, Shizgal [10] developed a Gaussian quad-
rature procedure for integrals of this type with the weight
function w{x)= x”exp(—x?) on the interval [0, oo ] and
applied the results to the solution of the Boltzmann and/or
Fokker—Planck equations [2]. For this weight function,
the coefficients «,, f, which appear in the three term
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recurrence relation (Eq. (2)) satisfy the two recurrence
relations,

Bori+oi+ B, =n+(p+1)2 (8)

and
(ntin+p+1)=48,, [o,(a,+o,, )+ 8,+3] (9)

which are numerically unstable. With each iteration, a
significant figure is lost so that in double precision these
recurrence relations generate only 10-13 polynomials
depending on the desired accuracy. Shizgal [10] employed
extended precision arithmetic to generate the recurrence
coefficients to high order { ~ 100), and hence the polynomiais
and the associated quadrature weights and points to at least
16 significant figures.

2b. Bimode Polynomials

The Fokker-Planck equation with nonlinear drift and
diffusion terms has been employed to describe the time
evolution of many non-equilibrium systems in physics,
chemistry, and biology [11]. In some situations the final
equilibrium distribution function is bimodal. Blackmore
and Shizgal [2] found that the weight function w(x)=
exp(—ax*/2 + bx?), defined on the interval [ —o0, 0],
arises naturally in such problems. For this choice of weight
function and interval, ¢, =0 and the 8, coeffecients satisfy
the recurrence relation

n+1

ﬁn+2=m

b
+__ﬂn+l_ﬁn (10)
a

with 8,=0.

2¢c. Druyvesteyn Polynomials

At high eiectric field strength, the steady state electron
velocity distribution of electrons dilutely dispersed in a
background gas of atoms is given by the Druyvesteyn dis-
tribution function [127, provided that the electron-atom
momentum transfer cross section is constant. This distribu-
tion function has the form x?exp(—ax*), where x is the
reduced speed of the electrons, We expect that a quadrature
method based on a weight function of this form will prove
useful in the solution of electron transport problems. Since
the derivation of the recurrence relations for this weight
function has not previously been provided, we briefly
outline the steps involved. The method closely follows that
used by Shizgal [10].

We consider the weight function w(x)= x* exp{—ax)
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defined on the interval [0, «c], for p=0,1,2,... The
normalized polynomial P, {x} can be written as

n

U
P,,(x)=m+--- (11)

50 that

XP(x)=nP,(x)+ S(x), (12)

where S(x} is orthogonal to P,(x). Hence we obtain the
identity

n={xP,P.>. (13)

If an integration by parts is performed on Eq. (13) and the
identity

w’(x)=‘%—4ax3w (14)

is employed, we obtain

2+ 1+ p=4dalx*P2y. (15)

With repeated application of Eq. (3) to the right-hand side
of Eq. (15) and use of the orthogonality of the polynomials,
we obtain the recurrence relation

2n+1 +P=4atﬁi+1 +Bni1Brya
| o+ Baiiad 3008, + 3L,
For BBl BB+ 20,0, B
+ 20,0, 1t 28, Fns 1] (16)

To obtain another recurrence relation we start with the
Christoffel-Darboux identity [6], given by

Y P2=/Buii [PoiiPa—P, o Pl (17)
k=0

Multiplying both sides of Eq. (17) by xw(x) and inte-
grating, we find

(18)

Z Ofk=\,. ﬁrr+1 <xP:!+1Prr>,
k=0

where we have used the fact that P, , , is orthogonal to P,,.
Integrating the right-hand side of Eq. (18) by parts and
using Eq. {14) we find

Z ak=4a\fﬁn+1 <x4Pn+an>'

k=0

(19)
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With repeated application of Eq. (3) we obtain a second
recurrence relation,

"
Z ak=4aﬂ”+][a"+2ﬁn+2+2an+lﬁn+2
k=0

+anﬁn+2+2an+lﬁn+l +an-+~iﬁn
+2anﬁn+l+2anﬁn+an—1ﬁu+a3+1

+oadta,ad  tade, ] (20}

Equations (16) and (20) are the desired recurrence relations.
They are third-order finite difference equations and require
six initial values (exg, &, &2, B;, B2, 81). These initial values
are easily evaluated in terms of the moments u,= {x"),
using Eqs. (3}-(6).

3. ASYMPTOTIC EXPANSIONS

Asymptotic properties of orthogonal polynomials (par-
ticularly those associated with exponential weight func-
tions) have been investigated by Nevai er al [13],
Magnus [14], Lew and Quarles [15], and Van Assche
[16]. Langhoff [17] also discusses asymptotic series to
approximate recurrence coefficients. The asymptotic techni-
ques we discuss here are similar to techniques described by
Lew and Quarles, and Magnus.

For ali the weight functions discussed in Section 2, the
recurrence relations for the «, and f, coefficients are
numerically unstable. Using double precision arithmetic
with approximately 16-digit accuracy, we were only able to
generate about 10 &, and f8,, coefficients for the Druyvesteyn
and speed polynomials, and approximately 25 for the
bimode polynomials. Ideally we would like to be able to
calculate an arbitrary number of a,, and j, coefficients to

‘high precision. Here we investigate the use of asymptotic

expansions to obtain approximate but accurate values for «,,
and f, as a function of n.

3a. Speed Polynomials

The first step in deriving an asymptotic series solution is
to find the leading behavior, that is, the first term in the
expansion. In all the cases described in Section 2, the «, and
B, coeflicients are all positive and approach infinity as
n — oo. This suggests that we write

%, =nd,, f,=nf, (21)

where the quantities &, and §, approach positive constants
A and B, respectively, as n — o0. Thus «,, ~ An"and f, ~ Bn*
as # — co, where r and s are unknown positive constants
and ~ means asymptotic to. Substituting these asymptotic



GENERATION OF ORTHOGONAL POLYNOMIALS

forms into the recurrence relations Egs. (8) and (9), we
obtain the two equations

2Bn.v+A2n2r=n
n? =4Bn* (24 + Br®).

(22)
(23)
We require that these equations hold for all »>{ so that

s=1 and r=13. The coeflicients 4 and B satisfy the two
equations

2B+ 4% =1
4B(2A*+ B)=1.

{24)
(25)
There are two possible solutions, namely A =0, B=1 or
A=./2/3, B=}. However, a, and f, are positive for all »,

s0 A and B must both be positive. Thus 4 =./2/3, B=1,
and the leading behavior is given by

a,~+/2nf3,  B,~nf6.

We now write the asymptotic expansions of the
coefficients &, and £, in the form

(26)

Y beet.

k=0

&nz Z akck: B'nz (27}
k=0

Here ¢ = 1/m°, z is an as yet undetermined positive constant,
and the first terms in the scries are given by ag=4A and
bo=8 In pgeneral, these are divergent asymptotic
expansions in the small parameter &.

In general, the recurrence relations for the «,, and §, coel-
ficients are coupled, nonlinear finite difference equations.
Once we have found the leading behavior, substitution of
Eq. (27) leads to a pair of linear equations for the a, and &,
expansion coefficients at each order (k) of the expansion.
These equations are then easily decoupled to obtain explicit
expressions for the a, and b, coefficients in terms of the set
of lower order coeflicients, that is {a;, &} ... Note that for
fixed order k, the asymptotic expansions become more
accurate as # — co. This 15 in contrast to other approxima-
tion methods [4, 18,197, where the accuracy rapidly
decreases with increasing n. -

Substituting Eq. (21) (with s =1 and r=3) into Eqs. (8)
and (9), we obtain

(n+ V) B, ., +n&2+nf,=n+(p+1)2

(4 p+1)=488,, [ Vna/nd,+/n+18,.,)

+af, +1/2]

(28)

(29)

We next determine the value of z. Divide both sides of
Eqgs. (28) and (29) by » and note that all coefficients can be

581/104/1-10
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expanded as power series in ¢ = 1/#°, where z = 1. Replacing
1/n by &, we obtain
(1+e) Bus s+ @+ Bu=1+[(p+1)22e
[1+(p+1)e] =48, [+ (1 +6) &8,
+ B, + (1/2)e].

(30)

(31)

In order to evaluate the a, b, coefficients in the
asymptotic series for &, and §,, we write Eqs. (30) and (31)
as power series in ¢ Substituting 1/(n+ 1}=¢/(1 +¢) into
Boe1=Y2 0 bul1/(n+ 1)*} (and similarly for &,,,), we
obtain

Hpp1= z a (1 +e)~* (32}

k=0

ﬁn+1= z bee*(14¢)7%

k=90

(33)

Finally we substitute Eqgs. (32) and (33) into Egs. (30) and
{31), expand all terms in powers of ¢, and equate coefficients
of equal powers of ¢.

To illustrate the procedure we derive the equations for the
coefficients @, and b,. Expanding Egs. (32) and (33} in
powers of ¢ and keeping only terms of arder ¢ or lower, we
obtain

Ept =an§a0+alg’

(34)

and similarly for f, .1 and fi,. The next step is to substitute
these expressions inte Egs. {30) and (31} and expand all
other terms in powers of £, retaining only terms of order ¢ or
lower. Finally, we substitute the known values of @, and by
and equate the coefficients of ¢ to obtain the two equations

2b, + (2 /2/3) a = p/2 + 1/3 (35)
(8/3/2/3) a, + (20/3) b, = p + 4/9. (36)

The solution of these equations gives a; = (2)'/2 ((p + 1)/6)
and b, = p/12. We find in analogous fashion that the next
terms are given by a, = (3)"? [(6p> —6p — 5)/144] and b, =
[(2-—9p7)/144]. In most cases it is easy to obtain the first
few g, and b, coefficients analyticaliy, but as the order k
increases, the number of terms one must keep track of
increases rapidly. In Section 5 we discuss two methods for
obtaining the higher order coeflicients.

3b. Bimode Polynomials

The derivation of the asymptotic series for the coefficients
f,, for the bimode polynomials is simpler than the derivation
for the speed polynomials since there is now only one
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recurrence relation. Rewriting the recurrence relation
Eq. (10} in the form

n+1
-+ Bn+1 5+1

ﬂrH-Zﬁn—l—l rﬁn-}«lﬁn (37)

and substituting f§,, ~ Br®, we find B = by = (b/a)(¢/3)"* and
s =1, where p = a/(25%). With the leading behavior, we can
systematically determine the coefficients in the asymptotic
series expansion. However, the presence of the term
{h/a} B, . in Eq. (37) requires that the series expansion be
in powers of e =n '/, instead of e=n"", as in the case of
speed polynomials. From this point on, the procedure for
calculating higher order terms in the series expansion is
exactly as in the case of speed polynomials. The first six

terms are by = (bja)/u/3, b, —b/(ﬁa) by = bj(24a ./ 3p),
by=0, bs=h(48u>— 1 /(1152@ J1/3), bs=b/(144q).

3c. Druyvesteyn Polynomials

The o, and §,, coefficients are given by Eqs. (16} and (20).
The coefficients «,, scale as @ ~* and the coefficients §, scale
as a~ ', where “g” is the constant which appears in the
weight function w(x) x* exp(—ax?). In order to simplify
the algebra we henceforth set @ = 1. The calculation of the
coefficients in the asymptotic series for the o, and 8, coef-
ficients is made more complicated by the term >} _ o,
appearing in Eq. (20). Since o, has an asymptotic expansion
of the form given by Eq. (21), that is,
SRR L S

(38)

o, ~agh +an

then the 37 _, &, can be evaluated approximately by
converting the sum to an integral and we anticipate the sum
to have the asymptotic form

Y oap~hont o+ hon
k=0

(3%)

The coefficients 4, #,, ... are determined by applying the
general Euler-Maclaurin summation formula valid for
n— oo [20], given by

i )~— n)+£:f{t)dt+C

fe ]

+ Y (1)t /I S (40)
El (+ 1)
to each term in the series
Y oap~ag Y kKtay Y kT e, Y K (41)
k=0 k=0 k=1 k=1
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In Eq. (41), Cis a constant [20] and B; is the jth Bernouili
number for which the lowest order numbers are By=1,
B,=-14%B,=% B,=0,B,= — 35, ctc. Weevaluate the I,
in each term of Eq. {(41) with the summation formula
Eq. (40). For example, the first summation on the right-
hand side of Eq. (40) is given by

54 174 —34

hC A e,
+5+Cot e+

A

) " Sla (42)

With this result in Eq. (41) we obtain, by comparison with
Eq. (39), that hon"*!1=g.n"*/(r+ 1). The coefficients «,
and f,, in the asymptotic expansion are evaluated as for the
other polynomials with Eqs. (i6) and (20} and the
asymptotic result Eq. (41). To lowest order this procedure
gives {with a=1) a,= 4 =2/(140)'", b,= B=1/(140)"2
and r=1/4, s=1/2. This gives the leading behavior in the
asymptotic expansions for «,, and §,,.

To evaluate the higher order terms, we obtain similar
expressions for the terms 37} _, k"7, etc. to obtain explicit
expressions for the coefficients kg, Ay, Alter some
algebra, we find /i, =a,/2+ 4a,, h,=a,/48 + a,/2 — 4a,/3,
etc. We have set to zero the constant terms Cp=q,Co+
a,C,+ --- that result from the Euler—Maclaurin summa-
tion expression for 3% _, «,. This is reasonable since we
assume that «, and £, have the form given in Eq. (21),
where @, and §, approach constants as n — oo, The choice
C,=0 is consistent with this behavior. This choice is also
justified by the fact that comparison of the asymptotic
solutions for «, and f,, with the exact results, discussed in
Section 5, indicates that the error in the asymptotic results
decreases rapidly with increasing n.

4, STABILITY ANALYSIS

The techniques of Section 2 when applied to classical
orthogonal polynomials (e.g., Laguerre or Hermite) yield
simple analytic results for «, and 8, versus n. However, for
nonclassical polynomials the same techniques yield non-
linear recurrence relations for 2, and 8, which are numeri-
cally unstable. In this section we use the asymptotic
solutions described in Section 3 to understand the nature of
this numerical instability. The instability is quite dramatic
and we usually find that approximately one digit of
accuracy 1s lost in each iteration. To understand this {19],
we consider a recurrence relation of the form

ﬂnr}»l: g(an’ ﬁn)' (43)

L =f(an’ ﬁn}’

The recurrence relations derived in Section 2 are generally
more complicated than this, but the method we describe can
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easily be generalized. Suppose that the #th iterates are given
by

__ aeRact
o, =a* "+ 4,

Ba= B+ ¢, (44)

where d, and e, are the errors in «, and f,. Assuming
d, <o and ¢, < f5, we then have

%yt =f(at;xaCl + 6n1 ﬂixam + 8,,)

. af af
~ exact exact 5
f(an * ﬁn )+ adixacl n + aﬁ:xac\ g?’l
exac af af
=27 o 0o+ e (45)

and similarly for f,,,. The relative error in «, is given
by 6,/a®* and the relative error in «,,, is given by
[(8ffoas ") 3, + (Bffofs™Y g, J/ac*2 . Thus the relative
error increases if

d,
exact
n

} [(3f302°) 8, + (B2BS") 2] ' >l (46)

exact
OEn+l

o

An approximate condition for error growth in %, , is then

o

T o
6B:Xéil:1

aaexact

"

>1 or > 1. (47)

(A similar analysis applies for f,,,.) If the magnitudes of
any of these partial derivatives are larger than 1, then, even
if all calculations are done in infinite precision arithmetic
but the starting values a,, {3, have finite precision, the coef-
ficients a,, and f, will eventually become inaccurate as »
increases.

Te decide whether a recurrence relation is numerically
unstable, it is necessary to have an estimate of the coef-
ficients &, and f#, for large n. We presented a method for
obtaining such estimates in Section 3. We use the results of
Section 3 to illustrate the numerical instability that occurs
in the calculation of the coefficients «, and f§, for the weight
function wi(x)= xPe * (p=0,1,2,..) on the interval
[0, @], 1.e., the speed polynomials. The recurrence relations
are given by Eqs. (8) and (9), which can be rearranged in
the form of Eq. (43). The function g(«,, f,) is easily
obtained from Eq. (8) and we have that (for large n)

g
2= 2t A )
6aexac

n

20/3, (48)

where the asymptotic result, Eq. (26) has been used, and

og
6ﬁ:xacl -

—1. (49)
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The function f{«,, §,} is more complicated and is obtained
by solving Eq. (9} for «,,, , and substituting for 8, , , from
Eq. (8). The derivative of f(«,,, §,) with respect to «,, can be
evaluated, and with the asymptotic result, Eq. {26), we find
(for large n)

o -~ 14.75 (30)
aa:xac
and
%29,/3/(211). (51)

The two terms which are greater than 1 (in absolute value)
cause the numerical instability. Note that the term
dgfdu*t ~ 2, /2nf3 is greater than one even for small n.
Thus these recurrence relations are numerically unstable for
all n. Similar results hold for the bimode and Druyvesteyn
polynomials. It is interesting to note that, although linear
recurrence relations which are unstable in the forward direc-
tion are stable in the backward direction {197, this does not
hold in general for nonlinear recurrence relations, In par-
ticular, suppose that we calculate a very accurate estimate
for «,,, B, for n» 1, using the asymptotic methods discussed
here. Then, for all three weight functions discussed in
Section 2, backward iteration of the recurrence relations for
a, and 8, is numerically unstable.

5. NUMERICAL RESULTS

The main objective of the present paper is the develop-
ment of an accurate computational method to calculate the
coefficients «, and §, in the three term recurrence relation
for nonclassical polynomials without resorting to multiple
precision arithmetic. The ultimate objective is to be able to
generate, accurately and efficiently, quadrature weights and
points for arbitrary weight functions parametrized by physi-
cal quanties. In the preceeding sections, we have presented
an asymptotic representation of these coeflicients, Egs. (21)
and {27} for three different nonclassical polynomials. In the
present section, we compare the results obtained for dif-
ferent orders in the asymptotic expansions with exact results
obtained with multiple precision arithmetic.

The direct summation of the asymptotic series may not be
usefu] beyond the first few terms since the coefficients even-
tually increase rapidly with increasing . Alternatively, one
can express the £th approximant to the asymptotic series in
the form of a ratio of lower degree polynomials (Padé
approximants) or in the form of a continued fraction,
as described in Bender and Orszag [20]. Both Padé
approximants and continued fractions may converge, where
an ordinary power series diverges. However, continued
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fractions are more convenient for numerical calculations
[207]. Given the kth order continued fraction approximant
for an arbitrary function f(x)

FEX)=cof(l+ ey x/(Y+eax/{l+ - x/{( + X)) ---)
(52)

the (k+ l)th-order continued fraction approximant is
obtained from the £ th-order approximant by replacing ¢, by
ci/{1 + ¢, ., x). This is not the case for Padé approximants.
The Padé approximant of order k =1+ m, () (x) is defined
by

ro+rx+raxt+ o +rx
St S X+ 537+ - +5, X7

Sim(x) = (53)

and calculation of the next order approximant f{}"(x)
requires, in addition to the added coeffictent r,,,,
the recalculation of all the lower order coeflicients
Por 50 T1» 51, - I, 8;. For this reason we used continued
fractions instead of Padé approximants to sum the
asymptotic series,

We calculated the continued fraction coefficients ¢, ¢, ...
and evaluated the continued fraction approximants using
standard algorithms [207). The continued fraction approxi-
mants should be more accurate than the corresponding
asymptotic series for large &, since the asymptotic series
coefficients diverge as k — co. In practice, we found that for
k < 8 there was usually little difference in accuracy between
the continued fraction and series approximations.

For each of the three weight functions discussed in this
paper, we were able to calculate the first few coefficients
{a,. b,} in the asymptotic series analytically. However, as &
increases the analytic calculations become quite tedious so

we obtained the higher order coefficients numerically. For

the speed and bimode polynomials we were able to obtain
the first 8-10 asymptotic series coefficients to acceptable
accuracy. Beyond k =~ 10, roundoff errors accumulate so
that higher order coefficients are inaccurate [21]. A useful
alternate method is to use 2 symbolic manipulation
program such as Macsyma or SMP to calculate analytical
expressions for the {a,, b, } as functions of k and any other
parameters which might appear in the recurrence relations
{e.g., p in the speed polynomials).

We also calculated the corresponding continued {raction
coefficients ¢y, ¢y, ..., ¢g and evaluated the continued frac-
tion approximants using standard algorithms described in
[207 for each of the three polynomials. We calculated' the
“exact” coefficients a, and f, from the recurrence relations
using multiple precision arithmetic and used these results to
calculate the relative error in the continued fraction
approximants for each of the three polynomials. Table 1
gives the lower order coefficients 4, and b, in the asymptotic
series expansions for «, and B, for the speed polynomials
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TABLE 1

Asymptotic Series Coefficients a, and b, for the
Speed Polynomials with p=2

k a, b,

0 8.1649( — 1)@ 1.6666(—1)
1 6.1237(— 1) 1.6666{—1)
2 5.9536( - 2) —23611(—1)
3 —47841(—1) 2.3611(—1)
4 9.3212{—-1) —1.5639(—1)
5 — 1.5644(0) —2.6041(—3)
6 1.893110) 2.9406{ — 1}
7 —63172(—1) —82333(—1)
8 —6.8526(0) 1.5374(0)

@ (p)= x 107

(with p=2). Figure 1 shows the logarithm of the relative
error in a,, as a function of # and & (the order of the approxi-
mant) for the speed polynomials, Even though we can
accurately calculate the continued fraction appioximants
only to order k ~ 8, the coefficients «, and f, are very
accurate for n = 10, For n < 10 one can solve the recurrence
relations without recourse to multiple precision arithmetic.
In this way one can obtain an approximate set {«,, §,} for
all » to better than eight digits of accuracy.

Table 11 gives the lower order coefficients 4, for the
bimode polynomials for 8, for the choice @ = # = 2. Figure 2
shows the logarithm of the relative error in §, as a function
of n and k. As for the speed polynomials, we can obtain the
B, coefficients to ~ 8-digit accuracy for all n by using double
precision in the recursion for # < 20 and continued fraction
approximants for # > 20.

For the Druyvesteyn polynomials we only obtained the

" first two terms in the asymptotic expansions for «, and 8,

analytically. We attempted to calculate higher order terms

!
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TABLE 11

Asymptotic Series Coefficients b, for the
Bimode Polynomials with a=6#=2

TABLE 111

Asymptotic Series Coefficients a, and b, for the
Druyvesteyn Polynomials with a=1

k by k aj by
0 2.8867(—1) 5.8143(—1) 8.4515(—2)
1 1.6666{ —1) 1 2.1803(—1) 42257(—2)
2 48112 —2)
3 0.0000{0)
X BOI8T(-3) TABLE 1V
5 6.9444( —3) Convergence of the Quadrature Points, x; (N = 20), versus the
6 —5.3458(-3) Order of the Asymptotic Expansion for w(x) = x%~*
7 —46296{—3)
8 —LI415(—3) i k=0 k=1 k=2 Exact % diff @
I 0.02358 0.05436 006102 0.06027 1.243
. . . . 2 013628 0.15614 0.16032 (.15984 0.301
in the asymptotlc series numerically, but. found that tpe two 3 027952 029642 0.29961 029978 o111
linear Cquat]OHS for (299 .and bz (See Section 3(3) ?re hr-learly 4 0.44630 047126 0.47538 0.4748%9 0.101
dependent. Table ITT gives the first two coefficients in the 5 065432 0.68015 0.68306 0.68271 0.052
asymptolic expansions for , and §, (with a=1). Figure 3 6 0389309 0.91655 0.91922 0.91891 0.034
shows the logarithm of the relative error in «,, as a function ~ 7 114599 L17755 118049 L1son 0032
of n and k 8 142754 1.46181 1.46378 1.46350 0019
T . . L. . 9 173297 1.76533 1.76712 1.76687 0.014
As mentioned prewousl)f, the main objective is o g0 20452 208709 208896 208867 0014
generate recurrence coefficients and the corresponding 11 2.38065 242723 242816 2.42793 0.009
quadrature weights and points for arbitrary weight function 12 273846 278379 2.78460 278441 0.007
determined by a particular physical problem. The proce- ii g-gzgig g;;zzz g-;zfgg ;;g?g; 8‘88:’4'
dures Fievel(_)ped in this paper to calculate tt}c lower order |5 Jeougs 396546 106518 396503 0.004
COCmC]CntS n fiouble preC]Slon‘and the l‘.emamder from the 16 430467 440536 4.40362 4.40350 0.003
leading term in the asymptotic expansion appears to be 17 477503 4.87502 487289 487283 0.001
promising. One aspect of this is the extent to which the 18 520400 5.39030 5383717 538334 —0.001
approximate set of recurrence coefficients correspond to the ;g g-ziggg Zﬁggg‘; Z-Zgggg z-zgggi‘ ‘g%}
original weight function. This involves what is referred to as ' ' ' j T
the clas.sical moment problem, that is, the determination of ) o giff = 100 x (x9 — xth =2 emost
the weight function from a known set of moments or,
equivalently, from the set of «, and §, coefficients. We have TABLE V
used the discrete Stieltjes procedure discussed by Langhoff Convergence of the Quadrature Weights, w, (N = 20), versus

[22] based on the earlier work of Shohat and Tamarkin

Ollljlélliilllilllll
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o 50 100
n

FIGURE 2

2,—

Order of the Asymptotic Expansion for w(x) = xe

i k=0 k=1 k=2 Exact % diff v
| 0674748(—4) 0.230648(—3) 0.292216(—3) 0.284521(—3) 2705
2 0237173(=2)  0.292250(—2) 0.299696(—2) 0.299003(—2) 0.232
3 0.10842(—1) QI26517(—1) 0.129921(—1) 0.£29546(—1) 0.289
4 0302334(—1) 0342622{ 1) 0346840(—1) 0.346259(—1) 0.168
5 0.636592(—1) 0651661(—1) 0650800(—1) 0.651032(—1)  —0.022
6 0881967(—1) 0901870(—1) 0.904392(—1) 0904512(—1) 0.042
7 0933812(—1) 0946743(~1) 0943194(—1) 0543464(—1)  —0.029
8 0.790182(—1) 0.742682(—1) 0738123(—1) 0.738744(—1) 0084
D 0460680(—1) 0.431515(—1) 0430210(—1} D.430399(—1)  —DD44
10 0.203998(~1) 0.485101(~1} 0.183674(—1) 0.183855(—1)  —0.099
11 0.687644(—2) 0.567438(—2} 0.563968(—2) 0.564628(—2) —0.117
12 0.149018(—2) 0.121832(—2) 0.12147%(—2) 0.121576(—2)  —0.080
13 0.239198(—3) 0.178668(—3) 0.177530(—3) 0.177774(—3} —0.138
14 0.260954(—4) 0.168920(—4) 0.169172(~4) 0.169360(—-4)  —O.t11
15 0.156451(—5) 0.990858(—6) 0.993303(—6) 0894232(—6)  —0.093
16 0.734920(—7) 0329204{—7) 0332192(—7) 0332639%(—7) —0.134
17 0.129572(—8) 0.551796(—9) 0.564401{—9) 0.564529(-9)  —0.023
18 0.236851(—10) 0381789(—11) 0.401897(—11) 0.402036{—11) —0.035
19 0:428064( — 13) OB18611(—14) 0.840047(—14) 0.841300(—14) —0.149
20 0:578266{—17) 0213212(—17) 0.212607(—17) 0.212995(—17) —0.182

(@ 0 difl = 100 x (wEeet — ik = 2o,
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237 to generate the weight function from the approximate
set of o, and B, coefficients. The approximate weight
function is given by

W{ft_)il[w}

2L x4 —x;

(54)
where %;=1(x,,,+x,), and x, and w, are the points and
weights corresponding to the approximate set of recurrence
coefficients. A comparison of this approximate weight func-
tion and the exact speed weight function is shown in Fig. 4.
The solid curve is the exact result, whereas the symbeols were
caiculated with Eq. (54). This agreement is not unexpected
since the lower order moments for the approximate and
exact set of recurrence coefficients are essentially the same.

Nevertheless, this demonstrates that the approximate
procedures developed in this paper can be very useful.

0.4 T T T T T T

xexp(—x*)

w(x)

FIGURE 4

CLARKE AND SHIZGAL

6. SUMMARY

In this paper we presented a derivation of the asymptotic
expansion of the coefficients «, and f, in the three term
recurrence relation for three sets of nonclassical orthogonal
polynomials as defined by different weight functions
and intervals: speed polynomials, bimode polynomials,
and Druyvesteyn polynomials. In the case of classical
orthogonal polynomials the recurrence relation coefficients
x, and B, are simple functions of n. For these nonclassical
polynomials, the coefficients «, and £, are determined by
the solution of a set of nonlinear recurrence relations which
are numerically unstable. Approximately one significant
figure is lost in e¢ach iteration. However, the recurrence rela-
tions can be used together with multiple precision algo-
rithms to calculate the recurrence coefficients up to n= 100
with 16 significant figures. This was done in previous papers
for speed polynomtals [10] and bimode polynomials [7],
and for Druyvesteyn polynomials in the present paper.

For all three sets of polynomials, divergent asymptotic
series expansions for the recurrence coefficients were derived
and combined with continued fraction approximants to
obtain accurate approximations for large n. The numerical
values obtained in this way were compared with the exact
values of &, and f3,, and the relative error evaluated. For the
speed and bimode polynomials we were able to obtain an
approximate set of «, and fi, coefficients accurate to eight
significant figures, using the recurrence relations in double
precision for # < 10 and with the asymptotic expansions for
n > 10. For the Druyvesteyn polynomials the first two terms
in the asymptotic series approximant gave approximately
3-digit accuracy for n > 10. For all three sets of polynomials,
the continued fraction approximants and asymptotic series
expansions gave about the same accuracy. Greater than
8-digit accuracy requires that more terms in the asymptotic
expansion be retained and that the series summation be per-
formed using continued fractions or Padé approximants.
However, if only 7-digit accuracy is required the asymptotic
scries expansion is sufficient,

The asymptotic series expansions for the coefficients «,
and f, permitted a useful analysis of the numerical stability
of the recurrence relations. This analysis shows that the
recurrence relations are unstable for all n. Thus even using
multiple precision airthmetic only allows one to calculate
a finite number of «, and £, coefficients. This contrasts
with the asymptotic approximations, where the accuracy
increases with increasing .

Shizgal [, 7,.10] has shown that using nonclassical
orthogonal polynomials as a basis set in the QDM tech-
nique often improves the convergence rate of the solution of
differential and integral equations. The method introduced
in the present paper presents a useful method for the
accurate and efficient evaluation of the recurrence coef-
ficients and corresponding quadrature points and weights.
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This should find useful applications to the solution of dif-
ferential and/or integral equations with the QDM, DVR, or
similar spectral methods. In a future paper, we will use the
Druyvesteyn polynomials in the solution Fokker-Planck-
type equations for electron transport to investigate the
accuracy of QDM in comparison with other numerical
techniques.
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